Центры окраски - meaning and definition. What is Центры окраски
Diclib.com
ChatGPT AI Dictionary
Enter a word or phrase in any language 👆
Language:

Translation and analysis of words by ChatGPT artificial intelligence

On this page you can get a detailed analysis of a word or phrase, produced by the best artificial intelligence technology to date:

  • how the word is used
  • frequency of use
  • it is used more often in oral or written speech
  • word translation options
  • usage examples (several phrases with translation)
  • etymology

What (who) is Центры окраски - definition

  • F-центр в кристалле NaCl
  • F<sub>2</sub>-центр в кристалле NaCl
  • F<sub>B</sub>-центр в кристалле NaCl
  •  Бездефектный кристалл NaCl

Центры окраски         

дефекты кристаллической решётки, поглощающие свет в спектральной области, в которой собственное поглощение кристалла отсутствует (см. Спектроскопия кристаллов). Первоначально термин "Ц. о." относился только к т. н. F-центрам (от нем. Farbenzentren), обнаруженным впервые в 30-х гг. в щёлочно-галогенных кристаллах Р. В. Полем с сотрудниками (Германия) и представляющим собой анионные вакансии (См. Вакансия), захватившие электрон [модель французского учёного де Бура, подтвержденная экспериментально и теоретически рассчитанная С. И. Пекаром (СССР)]. В дальнейшем под Ц. о. стали понимать любые точечные Дефекты в кристаллах, поглощающие свет вне области собственного поглощения кристалла - катионные и анионные вакансии, междоузельные ионы (собственные Ц. о.), а также примесные атомы и ионы (примесные центры). Ц. о. обнаруживаются у многих неорганических кристаллов и в стеклах; они широко распространены в природных минералах.

Собственные Ц. о. могут быть созданы воздействием ионизирующих излучений (См. Ионизирующие излучения) и света, соответствующего области собственного поглощения кристалла (фотохимическое окрашивание). Такие Ц. о. называются наведёнными. При фотохимическом окрашивании неравновесные носители заряда (электроны проводимости и дырки), возникшие под действием излучения, захватываются дефектами кристалла и изменяют их заряд, что обусловливает появление новых полос в спектре поглощения и изменение окраски кристалла. Обычно появляется по крайней мере 2 типа Ц. о. - с захваченным электроном (электронный Ц. о.) и дыркой (дырочный Ц. о.). Если частицы или фотоны, порождающие окрашивание, несут достаточно большую энергию, то они могут образовывать новые дефекты (см. Радиационные дефекты в кристаллах), которые тоже обычно возникают парами (например, вакансия - междоузельный ион). Наведённые Ц. о. могут быть разрушены при нагревании (термическое обесцвечивание) или воздействии света, соответствующего спектральной области поглощения самих Ц. о. (оптическое обесцвечивание). Под действием тепла или света один из носителей заряда, например электрон, освобождается из захватившего его дефекта и рекомбинирует с дыркой. Такой процесс может сопровождаться люминесценцией (См. Люминесценция), если выделившаяся при этом энергия испускается в виде кванта света. Под действием тепла могут исчезать и пары дефектов (например, междоузельный атом может заполнить соответствующую вакансию). В этом случае люминесценция, как правило, не наблюдается - вся выделившаяся энергия превращается в тепло.

При другом способе создания собственных Ц. о., называемом аддитивным окрашиванием, носители заряда, необходимые для создания Ц. о., вносятся в кристалл извне, а не образуются в нём самом (отсюда термин "аддитивное окрашивание", т. е. окрашивание при добавлении чего-либо). Это достигается прогреванием в парах металла или введением электронов в нагретый кристалл из остроконечного катода, или же при помощи электролиза. При прогреве в парах металла атомы металла диффундируют внутрь кристалла, заполняют катионные вакансии и, отдавая свои электроны анионным вакансиям, образуют F-центры. В некоторых случаях (например, в случае Флюорита) собственные Ц. о. могут возникать в процессе кристаллизации (См. Кристаллизация). Ц. о., образующиеся при аддитивном окрашивании и кристаллизации, не могут быть уничтожены термически или оптически - для их разрушения требуются иные воздействия. Так аддитивно окрашенные щёлочно-галогенные кристаллы обесцвечиваются при нагревании в атмосфере галогена; флюорит удалось получить неокрашенным, изменив условия кристаллизации.

Наиболее полно F-центры изучены в щёлочно-галогенных кристаллах, но обнаружены они и в др. кристаллах. F-центр в щёлочно-галогенных кристаллах обусловливает селективную полосу поглощения колоколообразного вида (F-полосу), обычно, в видимой области спектра, смещающуюся для кристаллов с одинаковыми анионами (катионами) и разными катионами (анионами) в сторону длинных волн при увеличении атомного веса катиона (аннона). Например, в NaCI F-полоса имеет максимум поглощения в синей области спектра (λ = 465 нм) и цвет кристалла - жёлто-коричневый (дополнительный цвет), в KCl - в зелёной области (λ = 563 нм) и кристалл выглядит фиолетовым.

В щёлочно-галогенных кристаллах обнаружены и др. более сложные собственные Ц. о. - F-агрегатные электронные центры: F2 (или М), F3 (или R), F4 (или N), представляют собой соответственно два, три и четыре сопряжённых F-центра (т. е. две, три или четыре анионные вакансии, захватившие 2,3,4 электрона); F2+, F3+ - ионизованные F2- и F3-центры и др. Дырочные центры в щёлочно-галогенных кристаллах представлены молекулярными ионами галогена (например, Cl), захватившими дырку (т. е. отдавшими один электрон), занимающими положение двух нормальных ионов (Vk-центр) или положение одного иона (Н-центр), которые могут находиться в сочетании с вакансией соседнего катиона (VF-центр) или двух катионов (Vt-центр).

Примесные Ц. о. - чужеродные атомы или ионы, внедрённые в кристалл, стекло или др. основу. В кристаллы для образования примесных Ц. о. примесь вводится в расплав или раствор в процессе кристаллизации или же путём диффузии в готовый кристалл. Примесные атомы и ионы так же, как и др. точечные дефекты, могут захватывать электрон или дырку, в результате чего изменяют полосу поглощения кристалла и его окраску. Наведённые примесные Ц. о. возникают в кристаллах и стеклах, содержащих примеси, при фотохимическом окрашивании благодаря изменению заряда примеси. В большинстве случаев ионы примеси, входящие в наведённые Ц. о., имеют валентность, отличную от ионов основы. Так, например, в кристалле KCl с примесью Tl примесный Ц. о. - ион Tl+, а наведённые примесные Ц. о. - атомы Tl и ионы Tl2+; в рубине (Al2O3 с примесью Cr) примесный Ц. о. - ион Cr3+, наведённые примесные Ц. о. - ионы Cr2+ и Cr4+. Все наведённые Ц. о. могут быть разрушены оптически или термически.

В кристаллах с примесями обнаружены также Ц. о. смешанного типа: FA-центры и Z-центры. Первые представляют собой F-центры, расположенные рядом с ионом примеси (активатором), вторые (в щёлочно-галогенных кристаллах) - F-центры, связанные с вакансиями и с двухвалентными примесными ионами (Ca, Sr). Наблюдаются также сложные примесные Ц. о., состоящие из двух или более частиц примеси одного или разных сортов. Например, в щёлочно-галогенных кристаллах обнаружены примесные Ц. о.. связанные с внедрением ионов (О-, O2-, S2-, S3-, SO2-, PO42-, CO32- и др.). Ц. о. под влиянием внешних воздействий (свет, тепло, электрическое поле) могут коагулировать, образуя т. н. коллоидные центры.

Ц. о., будучи центрами захвата электронов и дырок, могут служить центрами люминесценции (см. Центры свечения). Наиболее эффективным методом исследования Ц. о. является Электронный парамагнитный резонанс в сочетании со спектральными исследованиями, позволяющий расшифровать строение Ц. о.

Окрашивание и обесцвечивание кристаллов и стекол широко применяется в научном эксперименте и в технике. Оно используется в дозиметрии (См. Дозиметрия) ядерных излучении, в вычислительной технике (устройства для хранения информации), в устройствах, где применяются фотохромные материалы (солнцезащитные стекла, темнеющие под действием солнечного света и просветляющиеся в темноте) и др. В археологии и геологии по исследованиям Ц. о., возникших под действием излучения радиоактивных элементов, находящихся в толще Земли, определяют возраст глиняных изделий и минералов (см. Геохронология). Окраска ряда драгоценных камней и самоцветов связана с Ц. о. (аметист, цитрин, алмаз, амазонит и др.). Некоторые кристаллы и стекла с примесными Ц. о. используются в качестве активной среды в лазерах (рубин, стекло с примесью Nb и др.; см. Квантовая электроника, Лазер).

Лит.: Пекар С. И., Исследования по электронной теории кристаллов, М. - Л., 1951; Кац М. Л., Люминесценция и электронно-дырочные процессы в фотохимически окрашенных кристаллах щёлочно-галоидных соединений, Саратов, 1960; Physics of color centers, N. Y. - London, 1968; Townsend P. D., Kelly J. C., Colour centers and imperfections in insulators and semiconductors, L., 1973; Марфунин А. С., Спектроскопия, люминесценция и радиационные центры в минералах, М., 1975.

З. Л. Моргенштерн.

Центры окраски         
Це́нтры окра́ски (ЦО) — точечные дефекты в прозрачных диэлектриках (кристаллах и стёклах), поглощающие оптическое излучение вне области собственного поглощения диэлектрика, то есть в той спектральной области, где поглощение бездефектного диэлектрика отсутствует и он вследствие этого прозрачен. Иногда термин понимают в более узком смысле, применяя его только по отношению к дефектам, поглощающим в видимой области спектра.
Центры происхождения культурных растении         
  • Миссисипи]] (2-1 тыс. лет до н. э.)<ref>[http://www.sciencemag.org/content/300/5619/597 Farmers and Their Languages: The First Expansions<!-- Заголовок добавлен ботом -->]</ref>
  • слева
  • Распространение земледелия из Плодородного полумесяца на территории Европы с датами

географические центры генетического разнообразия культурных растений. Учение о Ц. п. к. р. возникло в связи с потребностью в исходном материале для селекции и улучшения сортов культурных растений. В основу его легла идея Ч. Дарвина ("Происхождение видов", гл. 12, 1859) о существовании географических центров происхождения биологических видов. В 1883 А. Декандоль опубликовал труд, в котором установил географические области начального происхождения главнейших культурных растений. Однако эти области были приурочены к целым континентам или к др. также достаточно обширным территориям. В течение полувека после выхода книги Декандоля познания в области происхождения культурных растений значительно расширились; вышли монографии, посвященные культурным растениям различных стран, а также отдельным растениям. Наиболее планомерно эту проблему разрабатывал в 1926-39 Н. И. Вавилов, стремившийся поставить генетику и селекцию на службу народного хозяйства СССР. На основании материалов о мировых растительных ресурсах (коллекция составляла около 250 000 образцов), собранных большим коллективом советских ботаников (в т. ч. и им самим) в многочисленных экспедициях, он выделял 7 основных географических Ц. п. к. р. (см. карту).

1. Южноазиатский тропический центр (около 33\% от общего числа видов культурных растений). Родина риса, сахарного тростника, множества тропических и овощных культур.

2. Восточноазиатский центр (20\% культурных растений). Родина сои, различных видов проса, овощных и плодовых культур.

3. Юго-Западноазиатский центр (4\% культурных растений). Важнейшая область происхождения видов возделываемых в Европе культур - хлебных злаков, бобовых, плодовых культур и винограда.

4. Средиземноморский центр (примерно 11\% видов культурных растений). Родина маслины, рожкового дерева, множества кормовых и овощных культур.

5. Эфиопский центр (около 4\% культурных растений). Характеризуется рядом эндемичных видов и даже родов - хлебный злак тефф, масличное растение нуг, особый вид банана, кофейное дерево и др. Характерно наличие оригинальных культурных эндемичных видов и подвидов пшеницы и ячменя.

6. Центральноамериканский центр. Отсюда берут начало около 90 пищевых, технических и лекарств. видов растений, в том числе кукуруза, длинноволокнистые виды хлопчатника, ряд видов фасоли, тыквы, какао, многие виды плодовых.

7. Андийский центр. Родина многих видов клубненосных растений. Прежде всего культурных видов картофеля, оки, ульюко, анью, а также хинного дерева, кокаинового куста и др.

Некоторые растения введены в прошлом в культуру и вне этих основных центров, но число таких растений невелико. Если ранее считалось, что основные очаги древних земледельческих культур - широкие долины Тигра, Евфрата, Ганга, Нила и др. крупных рек, то Вавилов показал, что почти все культурные растения появились в горных районах тропиков, субтропиков и умеренного пояса. Основные географические центры начального введения в культуру большинства возделываемых растений связаны не только с флористическим богатством, но и с древнейшими цивилизациями. Южно-азиатский тропический центр связан с высокой древнеиндийской и индокитайской культурами; Средне-азиатский - с этрусской, эллинской и египетской культурами, насчитывающими около 6 тыс. лет, и т.п. Таким образом, решающую роль в использовании дикой флоры сыграли качественный состав флоры, наличие развитой земледельческой культуры и соответственно больших населённых массивов.

Многочисленные раскопки археологов в 60-70-е гг. подтвердили теоретические представления Вавилова о центрах и очагах происхождения культурных растений. Многие исследователи, в том числе сов. ботаники П. М. Жуковский, Е. Н. Синская, А. И. Купцов, продолжая работы Вавилова, внесли в эти представления свои коррективы. Так, тропическую Индию и Индокитай с Индонезией рассматривают как 2 самостоятельных центра, основой Восточно-азиатского центра считают бассейн Хуанхэ, а не Янцзы, куда китайцы как народ-земледелец проникли позднее. Французские исследователи школы О. Швалье установили центр древнего земледелия в Западном Судане.

Лит.: Вавилов Н. И., Центры происхождения культурных растений, Л., 1926; его же, Учение о происхождении культурных растений после Дарвина, Избр. труды, т. 5, М. - Л., 1965; Синская Е. Н., Историческая география культурной флоры (на заре земледелия), Л., 1969; Жуковский П. М., Мировой генофонд растений для селекции, Л., 1970; Купцов А. И., Введение в географию культурных растений, М., 1975; Brücher Н., Gibtes Gen-zentren?, "Naturwissenschaf ten", 1969, Jg. 59, Н. 2.

Д. В. Тер-Аванесян.

Центры происхождения культурных растений.

Wikipedia

Центры окраски

Це́нтры окра́ски (ЦО) — точечные дефекты в прозрачных диэлектриках (кристаллах и стёклах), поглощающие оптическое излучение вне области собственного поглощения диэлектрика, то есть в той спектральной области, где поглощение бездефектного диэлектрика отсутствует и он вследствие этого прозрачен. Иногда термин понимают в более узком смысле, применяя его только по отношению к дефектам, поглощающим в видимой области спектра.

Образуются в результате бомбардировки диэлектриков потоками частиц, облучения их ультрафиолетовым, рентгеновским и гамма- излучениями, нагрева кристаллов в парах щелочных или щёлочноземельных металлов и другими способами.

What is Ц<font color="red">е</font>нтры окр<font color="red">а</font>ски - meaning and definition